科技: 人物 企业 技术 IT业 TMT
科普: 自然 科学 科幻 宇宙 科学家
通信: 历史 技术 手机 词典 3G馆
索引: 分类 推荐 专题 热点 排行榜
互联网: 广告 营销 政务 游戏 google
新媒体: 社交 博客 学者 人物 传播学
新思想: 网站 新书 新知 新词 思想家
图书馆: 文化 商业 管理 经济 期刊
网络文化: 社会 红人 黑客 治理 亚文化
创业百科: VC 词典 指南 案例 创业史
前沿科技: 清洁 绿色 纳米 生物 环保
知识产权: 盗版 共享 学人 法规 著作
用户名: 密码: 注册 忘记密码?
    创建新词条
科技百科——欢迎光临全球最大的互联网博物馆
  • 人气指数: 7554 次
  • 编辑次数: 1 次 历史版本
  • 更新时间: 2009-03-29
admin
admin
发短消息
相关词条
《颗粒流态化》
《颗粒流态化》
铝硅钛多元合金工程
铝硅钛多元合金工程
高温预制直埋保温管
高温预制直埋保温管
《马氏体相变晶体学导论》
《马氏体相变晶体学导论》
《材料研究学报》
《材料研究学报》
《振动工程学报》
《振动工程学报》
《无机材料学报》
《无机材料学报》
《材料科学与工艺》
《材料科学与工艺》
《功能材料》
《功能材料》
《摩擦学学报》
《摩擦学学报》
推荐词条
希拉里二度竞选
希拉里二度竞选
《互联网百科系列》
《互联网百科系列》
《黑客百科》
《黑客百科》
《网络舆情百科》
《网络舆情百科》
《网络治理百科》
《网络治理百科》
《硅谷百科》
《硅谷百科》
桑达尔·皮查伊
桑达尔·皮查伊
阿里双十一成交额
阿里双十一成交额
王健林电商梦
王健林电商梦
陌陌IPO
陌陌IPO
最新词条

热门标签

微博侠 数字营销2011年度总结 政务微博元年 2011微博十大事件 美国十大创业孵化器 盘点美国导师型创业孵化器 盘点导师型创业孵化器 TechStars 智能电视大战前夜 竞争型国企 公益型国企 2011央视经济年度人物 Rhianna Pratchett 莱恩娜·普莱契 Zynga与Facebook关系 Zynga盈利危机 2010年手机社交游戏行业分析报告 游戏奖励 主流手机游戏公司运营表现 主流手机游戏公司运营对比数据 创建游戏原型 正反馈现象 易用性设计增强游戏体验 易用性设计 《The Sims Social》社交亮 心理生理学与游戏 Kixeye Storm8 Storm8公司 女性玩家营销策略 休闲游戏的创新性 游戏运营的数据分析 社交游戏分析学常见术语 游戏运营数据解析 iPad风行美国校园 iPad终结传统教科书 游戏平衡性 成长类型及情感元素 鸿蒙国际 云骗钱 2011年政务微博报告 《2011年政务微博报告》 方正产业图谱 方正改制考 通信企业属公益型国企 善用玩家作弊行为 手机游戏传播 每用户平均收入 ARPU值 ARPU 游戏授权三面观 游戏设计所运用的化学原理 iOS应用人性化界面设计原则 硬核游戏 硬核社交游戏 生物测量法研究玩家 全球移动用户 用户研究三部曲 Tagged转型故事 Tagged Instagram火爆的3大原因 全球第四大社交网络Badoo Badoo 2011年最迅猛的20大创业公司 病毒式传播功能支持的游戏设计 病毒式传播功能 美国社交游戏虚拟商品收益 Flipboard改变阅读 盘点10大最难iPhone游戏 移动应用设计7大主流趋势 成功的设计文件十个要点 游戏设计文件 应用内置付费功能 内置付费功能 IAP功能 IAP IAP模式 游戏易用性测试 生理心理游戏评估 游戏化游戏 全美社交游戏规模 美国社交游戏市场 全球平板电脑出货量 Facebook虚拟商品收益 Facebook全球广告营收 Facebook广告营收 失败游戏设计的数宗罪名 休闲游戏设计要点 玩游戏可提高认知能力 玩游戏与认知能力 全球游戏广告 独立开发者提高工作效率的100个要点 Facebook亚洲用户 免费游戏的10种创收模式 人类大脑可下载 2012年最值得期待的20位硅谷企业家 做空中概股的幕后黑手 做空中概股幕后黑手 苹果2013营收 Playfish社交游戏架构

位错
位错又可称为差排(英语:dislocation),在材料科学中,指晶体材料的一种内部微观缺陷,即原子的局部不规则排列(晶体学缺陷)。从几何角度看,位错属于一种线缺陷,可视为晶体中已滑移部分未滑移部分的分界线,其存在对材料的物理性能,尤其是力学性能,具有极大的影响。“位错”这一概念最早由意大利数学家和物理学维托·伏尔特拉(Vito Volterra)于1905年提出。

目录

[显示全部]

位错的“几何概念”编辑本段回目录

位错简单立方(simple cubic)晶体原子排列和{100}晶面示意图
简单立方(simple cubic)晶体原子排列和{100}晶面示意图

刃位错和螺位错是主要的两种位错类型。然而实际晶体中存在的位错往往是混合型位错,即兼具刃型和螺型位错的特征。
晶体材料由规则排列的原子构成,一般把这些原子抽象成一个个体积可忽略的点,把它们排列成的有序微观结构称为空间点阵。逐层堆垛的原子构成一系列点阵平面的,称为晶面(可以将晶体中原子的排列情况想像成把橙子规则地装进箱子里的样子)。具体的排列情况如图2所示。在无位错的晶体(完整晶体)中,晶面(右图中的红色平行四边形)以等间距规则地排列。

刃位错

位错
一个刃位错附近的晶面排列情况,图中黑线代表伯格斯矢量方向,蓝线为位错线。

若一个晶面在晶体内部突然终止于某一条线处,则称这种不规则排列为一个刃位错。如图3和图4所示,刃位错附近的原子面会发生朝位错线方向的扭曲。刃位错可由两个量唯一地确定:第一个是位错线,即多余半原子面终结的那一条直线;第二个是伯格斯矢量Burgers vector,简称伯氏矢量柏氏矢量),它描述了位错导致的原子面扭曲的大小和方向。对刃位错而言,其伯氏矢量方向垂直于位错线的方向。
利用弹性力学理论可求得刃位错导致的应力场为:
位错

位错

位错

其中 μ 为材料的剪切模量,b 为伯格斯矢量,ν 为泊松比,x 和 y 为直角坐标分量。 从上述解中可以看出,在含有多余半原子面的一侧(y > 0),材料承受压应力(σxx > 0)。

螺位错

位错
一个螺位错附近的晶面排列情况
将规则排列的晶面想像成一叠间距固定的纸片,若将这叠纸片剪开(但不完全剪断),然后将剪开的部分其中一侧上移半层,另一侧下移半层,形成一个类似于楼梯拐角处的排列结构,则此时在“剪开线”终结处(这里已形成一条垂直纸面的位错线)附近的原子面将发生畸变,这种原子不规则排列结构称为一个螺位错
尽管形象不甚直观,但螺位错的应力场却远比刃位错的应力场容易求解。在一级近似下,螺位错应力场只有一个剪应力分量不为零:
位错

式中 μ 为材料的剪切模量,b 为伯氏矢量,r 为所在点的极坐标极轴分量。 该应力解显示,螺位错附近的应力场呈轴对称式分布,大小从内到外递减。但需要注意的是在位错核心区(r=0)处按上述解将得出应力无穷大,这是不符合实际情况的。因此上述应力表达式不适用于位错核心的严重畸变区。

混合位错

如前所述,刃位错的伯氏矢量垂直于位错线的方向,螺位错的伯氏矢量平行于其位错线方向。但实际材料中位错的伯氏矢量往往既非平行又非垂直于位错线方向,这些位错兼具了刃位错和螺位错的特征,称为混合位错。

位错的观测编辑本段回目录

间接观察,若材料中的位错线与材料表面相交(俗称位错“露头”),则交点处附近由于位错应力场的存在,其化学稳定性将低于表面的其它部分。若用酸性腐蚀剂(如氢氟酸硝酸的混合溶液)对这样的表面进行腐蚀,则位错“露头”处的腐蚀速度将远高于其它部分,可形成一个“腐蚀坑”。再利用一些表面显微观察技术(如扫描电子显微镜、干涉显微镜等等)便可以观察到位错的“露头”位置。下图中展示了在干涉显微镜下,经上述方法制备得到片表面位错腐蚀坑的形态,根据腐蚀坑边缘的形状可以确定硅片的晶体学取向——椭圆形代表硅片表面为(100)晶面,三角形代表硅片表面为(111)晶面。

位错 位错 位错
(100)硅片表面的位错 (111)硅片表面的位错 (111)硅片表面的位错






若施加外力令材料发生一系列微小变形,则每次变形后某一特定位错都将处于不同的位置。如果每次变形后都对材料表面进行腐蚀,则同一位错形成的一系列腐蚀坑将粗略地显示出位错运动的轨迹。
直接观察,利用透射电子显微镜(Transmission Electron Microscope,简称TEM)可直接观察到材料微结构中的位错。TEM观察的第一步是将金属样品加工成电子束可以穿过的薄膜。在没有位错存在的区域,电子通过等间距规则排列的各晶面时将可能发生衍射,其衍射角晶面间距电子波长之间满足布拉格定律(Bragg's law)。而在位错存在的区域附近,晶格发生了畸变,因此衍射强度亦将随之变化,于是位错附近区域所成的像便会与周围区域形成衬度反差,这就是用TEM观察位错的基本原理,因上述原因造成的衬度差称为衍射衬度。

位错
位错的透射电子显微镜照片
位错的透射电子显微镜照片
位错的透射电子显微镜照片

在右图中,中间稍亮区域(晶粒)里的暗线就是所观察到位错的像。由于多晶材料中不同晶粒的晶体学取向不同,因此晶粒之间亦存在衬度差别,这就是图7和图8中中间区域较周围区域更亮的原因。值得注意的是,图中位错像所具有的“蜿蜒”的形态,这是位错线在厚度方向穿过试样(薄膜)的位错在TEM下的典型形态;还需注意的是图中位错像的终结处实际上是因为位错线到达了试样表面,而非终结在了试样内部。所有位错都只能以位错环的形式终结于晶粒的内部。
用TEM观察位错时,放大倍数一般选在5万到30万倍之间,这远未达到TEM放大倍数的极限。部分TEM还配有对试样进行在观察中原位加热/变形的装置,可以直接对位错的运动进行实时观察。
场离子显微镜Field ion microscopy,简称FIM)和原子探针atom probe)技术提供了放大倍数更高(一般在300万倍以上)的观测方法,可在原子尺度对材料表面的位错进行直接观测。

位错源编辑本段回目录

材料中的位错密度会随着塑性形变的进行而增加,其数量大致满足关系:位错,其中 τ 为塑性流动应力,ρ 为位错密度。由这一关系可以推测,材料内部必然存在着位错的起源与增殖的机制,这些机制在外加应力的作用下将被激活,以提供增加的位错数。
人们已发现材料中存在以下三种位错的起源(成核)机制:均匀成核、晶界成核和界面成核,其中最后一种包括各种沉淀相、分散相或增强纤维等等。
位错的增殖机制主要也有三种机制:弗兰克-里德位错源Frank-Read source)机制、双交滑移增殖机制,和攀移增殖机制。
位错的滑移与晶体塑性
在1930年代以前,材料塑性力学行为的微观机理一直是严重困扰材料科学家重大难题。1926年,苏联物理学家雅科夫·弗仑克尔Jacov Frenkel)从理想完整晶体模型出发,假定材料发生塑性切变时,微观上对应着切变面两侧的两个最密排晶面(即相邻间距最大的晶面)发生整体同步滑移。根据该模型计算出的理论临界分剪应力τm 为:
位错

其中G 为剪切模量。一般常用金属的G 值约为10000MPa~100000MPa,由此算得的理论切变强度应为1000MPa~10000MPa。然而在塑性变形试验中,测得的这些金属的屈服强度仅为0.5~10MPa,比理论强度低了整整3个数量级。这是一个令人困惑的巨大矛盾。
1934年,埃贡·欧罗万Egon Orowan),迈克尔·波拉尼Michael Polanyi)和 G.I. 泰勒G. I. Taylor)三位科学家几乎同时提出了塑性变形的位错机制理论,解决了上述理论预测与实际测试结果相矛盾的问题。位错理论认为,之所以存在上述矛盾,是因为晶体的切变在微观上并非一侧相对于另一侧的整体刚性滑移,而是通过位错的运动来实现的。一个位错从材料内部运动到了材料表面,就相当于其位错线扫过的区域整体沿着该位错伯格斯矢量方向滑移了一个单位距离(相邻两晶面间的距离)。这样,随着位错不断地从材料内部发生并运动到表面,就可以提供连续塑性形变所需的晶面间滑移了。与整体滑移所需的打断一个晶面上所有原子与相邻晶面原子的键合相比,位错滑移仅需打断位错线附近少数原子的键合,因此所需的外加剪应力将大大降低。
在对材料进行“冷加工”(一般指在绝对温度低于0.3 Tm下对材料进行的机械加工,Tm 为材料熔点的绝对温度)时,其内部的位错密度会因为位错的萌生与增殖机制的激活而升高。随着不同滑移系位错的启动以及位错密度的增大,位错之间的相互交截的情况亦将增加,这将显著提高滑移的阻力,在力学行为上表现为材料“越变形越硬”的现象,该现象称为加工硬化work hardening)或应变硬化strain hardening)。缠结的位错常能在塑性形变初始发生时的材料中找到,缠结区边界往往比较模糊;在发生动态回复(recovery)过程后,不同的位错缠结区将分别演化成一个个独立的胞状结构,相邻胞状结构间一般有小于15°的晶体学取向差(小角晶界)。
由于位错的积累和相互阻挡所造成的应变硬化可以通过适当的热处理方法来消除,这种方法称为退火。退火过程中金属内部发生的回复再结晶等过程可以消除材料的内应力,甚至完全恢复材料变形前的性能。

刃位错的攀移编辑本段回目录

位错可以在包含了其伯格斯矢量和位错线的平面内滑移。螺位错的伯氏矢量平行于位错线,因此它可以在位错线所在的任何平面内滑移。而刃位错的伯氏矢量垂直于位错线,所以它只有一个滑移面。但刃位错还有一种在垂直于其滑移面方向上的运动方式,这就是攀移,即构成刃位错的多余半原子面的伸长或缩短。

位错
刃位错的攀移

攀移的驱动力来自于晶格中空位的运动。右图所示,若一个空位移到了刃位错滑移面上与位错线相邻的位置上,则位错核心处的原子将有可能“跃迁”到空位处,造成半原子面(位错核心)向上移动一个原子间距,这一刃位错“吸收”空位的过程称为正攀移。若反之,有原子填充到半原子面下方,造成位错核心向下移动一个原子间距,则称为负攀移。
由于正攀移导致了多余半原子面的退缩,所以将使晶体在垂直半原子面方向收缩;反之,负攀移将使晶体在垂直半原子面方向膨胀。因此,在垂直半原子面方向施加的压应力会促使正攀移的发生,反之拉应力则会促使负攀移的发生。这是攀移与滑移在力学影响上的主要差别,因为滑移是由剪应力而非正应力促成的。
位错的滑移与攀移另一处差异在于温度相关性。温度的升高能大大增加位错攀移的概率。相比而言,温度对滑移的影响则要小得多。

参考资料编辑本段回目录

1. 刘孝敏编著,《工程材料的微细观结构和力学性能》,中国科学技术大学出版社,合肥,2003,ISBN 7-312-01572-7
2. 冯端、丘第荣编,《金属物理学》第一卷《结构与缺陷》,科学出版社,北京,1987,ISBN 7-03-006431-3
3. Honeycombe, R.W.K., The Plastic Deformation of Metals, 1984, ISBN 0-7131-2181-5
4. Hull,D.&Bacon,D.J.,IntroductiontoDislocations,1984,ISBN0-08-028720-4

相关链接编辑本段回目录

→如果您认为本词条还有待完善,请 编辑词条

词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。
0

标签: 位错

收藏到: Favorites  

同义词: 暂无同义词

关于本词条的评论 (共0条)发表评论>>

对词条发表评论

评论长度最大为200个字符。