科技: 人物 企业 技术 IT业 TMT
科普: 自然 科学 科幻 宇宙 科学家
通信: 历史 技术 手机 词典 3G馆
索引: 分类 推荐 专题 热点 排行榜
互联网: 广告 营销 政务 游戏 google
新媒体: 社交 博客 学者 人物 传播学
新思想: 网站 新书 新知 新词 思想家
图书馆: 文化 商业 管理 经济 期刊
网络文化: 社会 红人 黑客 治理 亚文化
创业百科: VC 词典 指南 案例 创业史
前沿科技: 清洁 绿色 纳米 生物 环保
知识产权: 盗版 共享 学人 法规 著作
用户名: 密码: 注册 忘记密码?
    创建新词条
科技百科
  • 人气指数: 2743 次
  • 编辑次数: 1 次 历史版本
  • 更新时间: 2009-03-31
admin
admin
发短消息
相关词条
石墨烯
石墨烯
移动硬盘播放器
移动硬盘播放器
3gp
3gp
山寨现象
山寨现象
朱克贵
朱克贵
唐耀先
唐耀先
彭谦
彭谦
何志辉
何志辉
高一陵
高一陵
吴载德
吴载德
推荐词条
希拉里二度竞选
希拉里二度竞选
《互联网百科系列》
《互联网百科系列》
《黑客百科》
《黑客百科》
《网络舆情百科》
《网络舆情百科》
《网络治理百科》
《网络治理百科》
《硅谷百科》
《硅谷百科》
2017年特斯拉
2017年特斯拉
MIT黑客全纪录
MIT黑客全纪录
桑达尔·皮查伊
桑达尔·皮查伊
阿里双十一成交额
阿里双十一成交额
最新词条

热门标签

微博侠 数字营销2011年度总结 政务微博元年 2011微博十大事件 美国十大创业孵化器 盘点美国导师型创业孵化器 盘点导师型创业孵化器 TechStars 智能电视大战前夜 竞争型国企 公益型国企 2011央视经济年度人物 Rhianna Pratchett 莱恩娜·普莱契 Zynga与Facebook关系 Zynga盈利危机 2010年手机社交游戏行业分析报告 游戏奖励 主流手机游戏公司运营表现 主流手机游戏公司运营对比数据 创建游戏原型 正反馈现象 易用性设计增强游戏体验 易用性设计 《The Sims Social》社交亮 心理生理学与游戏 Kixeye Storm8 Storm8公司 女性玩家营销策略 休闲游戏的创新性 游戏运营的数据分析 社交游戏分析学常见术语 游戏运营数据解析 iPad风行美国校园 iPad终结传统教科书 游戏平衡性 成长类型及情感元素 鸿蒙国际 云骗钱 2011年政务微博报告 《2011年政务微博报告》 方正产业图谱 方正改制考 通信企业属公益型国企 善用玩家作弊行为 手机游戏传播 每用户平均收入 ARPU值 ARPU 游戏授权三面观 游戏设计所运用的化学原理 iOS应用人性化界面设计原则 硬核游戏 硬核社交游戏 生物测量法研究玩家 全球移动用户 用户研究三部曲 Tagged转型故事 Tagged Instagram火爆的3大原因 全球第四大社交网络Badoo Badoo 2011年最迅猛的20大创业公司 病毒式传播功能支持的游戏设计 病毒式传播功能 美国社交游戏虚拟商品收益 Flipboard改变阅读 盘点10大最难iPhone游戏 移动应用设计7大主流趋势 成功的设计文件十个要点 游戏设计文件 应用内置付费功能 内置付费功能 IAP功能 IAP IAP模式 游戏易用性测试 生理心理游戏评估 游戏化游戏 全美社交游戏规模 美国社交游戏市场 全球平板电脑出货量 Facebook虚拟商品收益 Facebook全球广告营收 Facebook广告营收 失败游戏设计的数宗罪名 休闲游戏设计要点 玩游戏可提高认知能力 玩游戏与认知能力 全球游戏广告 独立开发者提高工作效率的100个要点 Facebook亚洲用户 免费游戏的10种创收模式 人类大脑可下载 2012年最值得期待的20位硅谷企业家 做空中概股的幕后黑手 做空中概股幕后黑手 苹果2013营收 Playfish社交游戏架构

目录

热化学编辑本段回目录

 

正文编辑本段回目录

  研究化学反应、溶解过程和聚集状态改变过程所伴随的热效应的化学分支学科。在上述过程中,如果体系从环境吸热,称为吸热过程;如果体系向环境放热,则称为放热过程。按热力学规定,吸热为正;放热为负。
  反应热  反应的热效应与温度、压力或外界对体积所施加的限制条件有关。热效应可以用量热计测量。在量热计中所进行的反应的温度,随反应的进展而改变,反应前的起始温度不等于反应后的终态温度,但可从所测得热效应计算出在等温条件下的反应热,所以一般只讨论等温反应。从热力学角度来看,有两类反应特别重要:①等容过程,即反应体系的体积保持不变,例如在弹量热计中所进行的燃烧反应。由于体系体积不变,体系不作功,则根据热力学第一定律

ΔUQV

式中ΔU为体系内能的变化;QV为等容过程的热效应。②等压过程,即体系的压力(假定它与外压力差别甚微)在过程中保持不变,例如在敞口容器中所进行的反应。在此条件下:

ΔHQp

式中ΔH为体系的变;Qp为等压过程的热效应。所以,利用热化学方法可以求得体系的这两个热力学状态函数的变化,大部分反应都是在等压或接近等压下进行的,所以ΔH应用得更为普遍,ΔU和ΔH可以互相换算。
  盖斯定律  在等容和等压下,反应热等于热力学状态函数的变化,所以它们只与反应前的始态和反应后的终态有关,而与反应途径无关。如果把某一反应方程式所表达的反应,任意地分成若干中间步骤,并使代表中间步骤的诸反应方程式之和等于原反应方程式,则这些中间反应的反应热之和,必定等于原反应方程式所表达的反应的反应热,而与中间步骤的分解方式无关。这就是G.H.盖斯于1840年从实验总结出来的“热加和守恒定律”。这一结论只是热力学第一定律在特定情况下的表现,但盖斯的总结略早于第一定律的确认,所以人们称此规律为盖斯定律。应用此定律,可把某一难以测量反应热的反应分解为若干易于测量的反应系列,从而求得该反应的反应热。
  即使规定了外界条件,例如上述等温、等压和等温、等容条件,反应热还与反应的反应物和产物所处的状态(例如气、液、固态)以及溶液的浓度等有关。在标准态定义中,对温度未作规定,但按惯例,取298.15K为参考温度。如果一个反应的所有反应物和产物均各自处于标准态,则该反应的反应热称为标准反应热,在等温等压下为ΔH°,在等温等容下为ΔU°,它可能只是一个虚拟的反应,其标准反应热可从实测反应热经过修正得到。
  生成热  每一化合物可能参加不同的反应。即使只列举它们的标准反应热,数目也将多得惊人。为此,需要引入“生成热”的概念。首先,对元素规定其标准态,即它们在298.15K和1大气压下的最稳定状态。例如,O2(气)为气态,H2(气)为气态,C(石墨)为石墨态等。任一化合物的标准生成热热化学的定义为由化合物中各元素的稳定单质生成此化合物的标准反应热,例如:

热化学

对任何普遍反应:

热化学

其标准反应热热化学为:

热化学

即任一反应的标准反应热等于该反应产物的标准生成热之和减去反应物的标准生成热之和。如果对所有的化合物都测得其标准生成热,就可以计算出它们之间任何反应的标准反应热。这样,就简化了数据的报道方式。
  在实际生产中,反应条件要由反应速率、效率等具体要求来确定,例如合成氨须在高温、高压下进行,标准反应热不是在此条件下的反应热。我们可以利用下列热力学关系:

热化学

式中ΔCp和 ΔV为反应产物与反应物的定压热容和体积之差。将标准反应热修正为实际条件下的反应热,需要ΔCp和ΔV,以及ΔV对温度的导数等辅助数据。反应热是化工生产设计热平衡的不可缺少的数据。
  根据热力学第三定律,利用所得热容数据,可以求得物质的值。利用此法,可以把一个反应的产物和反应物的熵都求出来,并结合其反应热,得出此反应的标准吉布斯函数变化:ΔG°=ΔH°-TΔS°(ΔS°为标准熵变)。这一完全由量热手段得出ΔG°这一重要热力学函数的方法有重要的意义。因为我们总可以把一反应的各个反应物和各个产物冷却至接近绝对零度,测量其热容直至所需温度,但不一定能找到合适的催化剂使此反应(不管是自发的还是在电池中的)能以适当的速率进行。事实上,很大部分的吉布斯函数数据是由此法提供的。
  虽然引入生成热概念,能大大简化数据报道方式,但现在科学进展极快,每年出现的新化合物何止万千。要测量每一化合物的生成热,人力和技术上都无可能。于是,热化学家运用另一策略,想从一些已知的关键化合物的生成热数据总结出经验的或半经验的规律,来推算未测的化合物的生成热数值,为此,他们将热化学量与结构参数联系起来。
  原子化热  分子在基态中的总能量包含:①组成原子间的化学结合能;②分子平移、转动、振动等热能;③分子间相互作用能。第③项能量可以加以排除,即通过挥发热的测定及其气态的压力、体积、温度数据修正,使分子处于理想气体状态。第①项和第②项一般不再分立,而认为总的化学结合焓等于下列过程:
  分子(基态,理想气体,T1)→原子(基态,理想气体,T1)。该过程的反应热称为分子的原子化热热化学,对于分子式为KkLlMm的分子:

热化学

元素原子的气态生成热(例如氧原子的生成热)已由光谱、热化学等方法精确地测定。分子的气态生成热则由热化学方法得出。
  键能  一定的原子对所形成的化学键具有一定的特征键能(焓)数值,并可以在不同的分子间转移。如果确是这样,则对于那些组成原子间没有其他非键相互作用的分子来说,ΔH?等于分子内所有键能(焓)之和。再从ΔH?回归至ΔH懤,就达到了上面所述的计算标准生成热的目的。
  20世纪30年代以来,由于石油化工发展的要求,热化学家完善了量热手段,特别是燃烧量热法(见燃烧量热学),测得大量烃类化合物的精确生成热数据。用这些数据来考验上述键能(焓)概念,发现它是不够准确的,必须修正为:一化学键的紧邻原子如果保持不变,则其键能(焓)确实具有特征的数值,并可在不同结构的分子间转移。例如,在饱和烃类分子中的伯C—H键、仲C—H键和叔C—H键,由于C—H上的碳原子的紧邻原子不同,应具有不同的特征键能(焓)。用经验规律修正原子间的空间阻碍和环张力能(焓)后,用这种修正后的近代键能模式计算烃类化合物的ΔH?,取得了很大的成功。计算值与实测值的精确度基本上相当。
  把这一方案扩展至含碳、氢以外元素的分子,例如含卤素和金属元素等具有极性原子的分子后,其结果不如烃类那样成功。首先,这是由于与这些分子有关的热化学数据不足,阻碍了它们的键能模式的建立;其次,极性原子间的非键相互作用的模型还有待发展。对于前者,转动量热学的完善,有助于取得这些分子的精确热化学数据;对于后者,分子力学方法的进一步发展,可能提供有效的途径。
  展望  热化学方法还可应用于复杂的体系,在生物体系的研究方面,热化学和热力学方法的应用是一个发展方向。但从热力学和热化学观点来看,生物体系的热力学状态不易确定。严格地说,所测热效应及其解释只是把热化学方法作为分析工具来应用。另一方面,有人在研究一些在一定程度上与生物体有相似之处的模型化合物。这类研究可为解释一些生物功能提供线索。这些模型化合物是一般化合物,其热力学状态是容易规定的。在这方面已取得了一些重要结果。对生物体系研究的另一困难是其众多热效应并存,难以区分。需要通过对研究对象的选择和对其副反应的抑制来解决。对某些生化反应(例如酶与其底物的反应),本身已具备反应的专一性者,可以在其生理环境下加以研究。

 

配图编辑本段回目录

 

相关连接编辑本段回目录

→如果您认为本词条还有待完善,请 编辑词条

词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。
0

标签: 热化学

收藏到: Favorites  

同义词: 暂无同义词

关于本词条的评论 (共0条)发表评论>>

对词条发表评论

评论长度最大为200个字符。