命题逻辑编辑本段回目录
正文编辑本段回目录
语法和语义 研究命题逻辑需要使用公式表示复合命题的形式,并反映复合命题的逻辑特征,组成这种公式的一组符号和规定怎样由符号构成公式的一组规则,合在一起便构成一个人工符号语言。当把符号和公式看作是没有意义的具体对象,只研究公式之间的关系时,这种研究称为语法的;当对符号和公式予以解释,例如把一部分符号解释为命题联结词,把某些符号解释成取真假二值为值的变元,并在这种解释下研究公式的意义时,便称这种研究为语义的。命题逻辑在描述和研究符号语言、即对象语言时,还要使用另一种语言,即元语言。元语言通常由某种自然语言并加上若干专门符号构成。关于整个命题逻辑系统的性质和系统特征的研究,称为元逻辑的研究。由元逻辑研究得到的关于整个逻辑系统的定理称为元定理。
命题形式 用特定的语词把命题连接起来可以构成复合命题;从中起连接作用的语词称为命题联结词;构成复合命题的命题称为支命题,支命题本身也可以是复合命题。命题逻辑研究复合命题的逻辑形式、推理形式和公理系统。传统逻辑关于假言推理、选言推理和二难推理等的理论,都属于命题逻辑的范围。复合命题的形式可以公式明晰地表示。在经典命题逻辑里,这种公式通常由以下 3种符号组成:①表示任意命题的命题变元,它们是 p,q,r,p1 ,q1 ,...;②5个基本的命题联结词,即墶ⅰ摹ⅰ拧ⅰ??O;③用来显示公式的结构层次的括弧(,)。5个基本的命题联结词依次称为否定词、合取词、析取词、蕴涵词和等值词;在汉语中,它们通常分别用语词"并非"、"并且"、"或者(可兼的)"、"如果...则"以及"当且仅当"表达,在这5个联结词中,否定词属一元联结词,其余 4个都是连接两个命题以构成复合命题,称为二元联结词。复合命题的形式都可以用这3类符号构成的公式表示。如