科技: 人物 企业 技术 IT业 TMT
科普: 自然 科学 科幻 宇宙 科学家
通信: 历史 技术 手机 词典 3G馆
索引: 分类 推荐 专题 热点 排行榜
互联网: 广告 营销 政务 游戏 google
新媒体: 社交 博客 学者 人物 传播学
新思想: 网站 新书 新知 新词 思想家
图书馆: 文化 商业 管理 经济 期刊
网络文化: 社会 红人 黑客 治理 亚文化
创业百科: VC 词典 指南 案例 创业史
前沿科技: 清洁 绿色 纳米 生物 环保
知识产权: 盗版 共享 学人 法规 著作
用户名: 密码: 注册 忘记密码?
    创建新词条
科技百科——欢迎光临全球最大的互联网博物馆
  • 人气指数: 2673 次
  • 编辑次数: 1 次 历史版本
  • 更新时间: 2009-03-11
admin
admin
发短消息
相关词条
SIM卡
SIM卡
WEBSPHERE
WEBSPHERE
FTP
FTP
並行計算
並行計算
国外计算机科学状况
国外计算机科学状况
混龄教育
混龄教育
学科信息门户
学科信息门户
UBUNTU
UBUNTU
恩尼格玛
恩尼格玛
广播工程师
广播工程师
推荐词条
希拉里二度竞选
希拉里二度竞选
《互联网百科系列》
《互联网百科系列》
《黑客百科》
《黑客百科》
《网络舆情百科》
《网络舆情百科》
《网络治理百科》
《网络治理百科》
《硅谷百科》
《硅谷百科》
桑达尔·皮查伊
桑达尔·皮查伊
阿里双十一成交额
阿里双十一成交额
王健林电商梦
王健林电商梦
陌陌IPO
陌陌IPO
最新词条

热门标签

微博侠 数字营销2011年度总结 政务微博元年 2011微博十大事件 美国十大创业孵化器 盘点美国导师型创业孵化器 盘点导师型创业孵化器 TechStars 智能电视大战前夜 竞争型国企 公益型国企 2011央视经济年度人物 Rhianna Pratchett 莱恩娜·普莱契 Zynga与Facebook关系 Zynga盈利危机 2010年手机社交游戏行业分析报告 游戏奖励 主流手机游戏公司运营表现 主流手机游戏公司运营对比数据 创建游戏原型 正反馈现象 易用性设计增强游戏体验 易用性设计 《The Sims Social》社交亮 心理生理学与游戏 Kixeye Storm8 Storm8公司 女性玩家营销策略 休闲游戏的创新性 游戏运营的数据分析 社交游戏分析学常见术语 游戏运营数据解析 iPad风行美国校园 iPad终结传统教科书 游戏平衡性 成长类型及情感元素 鸿蒙国际 云骗钱 2011年政务微博报告 《2011年政务微博报告》 方正产业图谱 方正改制考 通信企业属公益型国企 善用玩家作弊行为 手机游戏传播 每用户平均收入 ARPU值 ARPU 游戏授权三面观 游戏设计所运用的化学原理 iOS应用人性化界面设计原则 硬核游戏 硬核社交游戏 生物测量法研究玩家 全球移动用户 用户研究三部曲 Tagged转型故事 Tagged Instagram火爆的3大原因 全球第四大社交网络Badoo Badoo 2011年最迅猛的20大创业公司 病毒式传播功能支持的游戏设计 病毒式传播功能 美国社交游戏虚拟商品收益 Flipboard改变阅读 盘点10大最难iPhone游戏 移动应用设计7大主流趋势 成功的设计文件十个要点 游戏设计文件 应用内置付费功能 内置付费功能 IAP功能 IAP IAP模式 游戏易用性测试 生理心理游戏评估 游戏化游戏 全美社交游戏规模 美国社交游戏市场 全球平板电脑出货量 Facebook虚拟商品收益 Facebook全球广告营收 Facebook广告营收 失败游戏设计的数宗罪名 休闲游戏设计要点 玩游戏可提高认知能力 玩游戏与认知能力 全球游戏广告 独立开发者提高工作效率的100个要点 Facebook亚洲用户 免费游戏的10种创收模式 人类大脑可下载 2012年最值得期待的20位硅谷企业家 做空中概股的幕后黑手 做空中概股幕后黑手 苹果2013营收 Playfish社交游戏架构

IPv6是"Internet Protocol Version 6"的缩写,也被称作下一代互联网协议,它是由IETF设计的用来替代现行的IPv4协议的一种新的IP协议。

目录

[显示全部]

简介编辑本段回目录

IPV6协议IPV6
IPV6
今天的互联网大多数应用的是IPv4协议,IPv4协议已经使用了20多年,在这20多年的应用中,IPv4获得了巨大的成功,同时随着应用范围的扩大,它也面临着越来越不容忽视的危机,例如地址匮乏等等。

IPv6是为了解决IPv4所存在的一些问题和不足而提出的,同时它还在许多方面提出了改进,例如路由方面、自动配置方面。经过一个较长的IPv4和IPv6共存的时期,IPv6最终会完全取代IPv4在互连网上占据统治地位。对比IPv4,IPv6有如下的特点,这些特点也可以称作是IPv6的优点:简化的报头和灵活的扩展 ;层次化的地址结构 ;即插即用的连网方式 ;网络层的认证与加密 ;服务质量的满足 ;对移动通讯更好的支持。

简化的报头和灵活的扩展编辑本段回目录

IPv6对数据报头作了简化,以减少处理器开销并节省网络带宽。IPv6的报头由一个基本报头和多个扩展报头(Extension Header)构成,基本报头具有固定的长度(40字节),放置所有路由器都需要处理的信息。由于Internet上的绝大部分包都只是被路由器简单的转发,因此固定的报头长度有助于加快路由速度。IPv4的报头有15个域,而IPv6的只有8个域,IPv4的报头长度是由IHL域来指定的,而IPv6的是固定40个字节。这就使得路由器在处理IPv6报头时显得更为轻松。与此同时,IPv6还定义了多种扩展报头,这使得IPv6变得极其灵活,能提供对多种应用的强力支持,同时又为以后支持新的应用提供了可能。这些报头被放置在IPv6报头和上层报头之间,每一个可以通过独特的“下一报头”的值来确认。除了逐个路程段选项报头(它携带了在传输路径上每一个节点都必须进行处理的信息)外,扩展报头只有在它到达了在IPv6的报头中所指定的目标节点时才会得到处理(当多点播送时,则是所规定的每一个目标节点)。在那里,在IPv6的下一报头域中所使用的标准的解码方法调用相应的模块去处理第一个扩展报头(如果没有扩展报头,则处理上层报头)。每一个扩展报头的内容和语义决定了是否去处理下一个报头。因此,扩展报头必须按照它们在包中出现的次序依次处理。一个完整的IPv6的实现包括下面这些扩展报头的实现:逐个路程段选项报头,目的选项报头,路由报头,分段报头,身份认证报头,有效载荷安全封装报头,最终目的报头。

层次化的地址结构编辑本段回目录

IPv6将现有的IP地址长度扩大4倍,由当前IPv4的32位扩充到128位,以支持大规模数量的网络节点。这样IPv6的地址总数就大约有3.4*10E38个。平均到地球表面上来说,每平方米将获得6.5*10E23个地址。IPv6支持更多级别的地址层次,IPv6的设计者把IPv6的地址空间按照不同的地址前缀来划分,并采用了层次化的地址结构,以利于骨干网路由器数据包的快速转发

IPv6定义了三种不同的地址类型。分别为单点传送地址(Unicast Address),多点传送地址(Multicast Address)和任意点传送地址(Anycast Address)。所有类型的IPv6地址都是属于接口(Interface)而不是节点(node)。一个IPv6单点传送地址被赋给某一个接口,而一个接口又只能属于某一个特定的节点,因此一个节点的任意一个接口的单点传送地址都可以用来标示该节点。

IPv6中的单点传送地址是连续的,以位为单位的可掩码地址与带有CIDR的IPv4地址很类似,一个标识符仅标识一个接口的情况。在IPv6中有多种单点传送地址形式,包括基于全局提供者的单点传送地址、基于地理位置的单点传送地址、NSAP地址、IPX地址、节点本地地址、链路本地地址和兼容IPv4的主机地址等。

多点传送地址是一个地址标识符对应多个接口的情况(通常属于不同节点)。IPv6多点传送地址用于表示一组节点。一个节点可能会属于几个多点传送地址。在Internet上进行多播是在1988年随着D类IPv4地址的出现而发展起来的。这个功能被多媒体应用程序所广泛使用,它们需要一个节点到多个节点的传输。RFC-2373对于多点传送地址进行了更为详细的说明,并给出了一系列预先定义的多点传送地址。

任意点传送地址也是一个标识符对应多个接口的情况。如果一个报文要求被传送到一个任意点传送地址,则它将被传送到由该地址标识的一组接口中的最近一个(根据路由选择协议距离度量方式决定)。任意点传送地址是从单点传送地址空间中划分出来的,因此它可以使用表示单点传送地址的任何形式。从语法上来看,它与单点传送地址间是没有差别的。当一个单点传送地址被指向多于一个接口时,该地址就成为任意点传送地址,并且被明确指明。当用户发送一个数据包到这个任意点传送地址时,离用户最近的一个服务器将响应用户。这对于一个经常移动和变更的网络用户大有益处。

即插即用的连网方式编辑本段回目录

IPv6把自动将IP地址分配给用户的功能作为标准功能。只要机器一连接上网络便可自动设定地址。它有两个优点。一是最终用户用不着花精力进行地址设定,二是可以大大减轻网络管理者的负担。IPv6有两种自动设定功能。一种是和IPv4自动设定功能一样的名为“全状态自动设定”功能。另一种是“无状态自动设定”功能。

在IPv4中,动态主机配置协议(Dynamic Host Configuration Protocol,DHCP)实现了主机IP地址及其相关配置的自动设置。一个DHCP服务器拥有一个IP地址池,主机从DHCP服务器租借IP地址并获得有关的配置信息(如缺省网关DNS服务器等),由此达到自动设置主机IP地址的目的。IPv6继承了IPv4的这种自动配置服务,并将其称为全状态自动配置(Stateful Autoconfiguration)。

在无状态自动配置(Stateless Autoconfiguration)过程中,主机首先通过将它的网卡MAC地址附加在链接本地地址前缀1111111010之后,产生一个链路本地单点传送地址。接着主机向该地址发出一个被称为邻居发现(neighbor discovery)的请求,以验证地址的唯一性。如果请求没有得到响应,则表明主机自我设置的链路本地单点传送地址是唯一的。否则,主机将使用一个随机产生的接口ID组成一个新的链路本地单点传送地址。然后,以该地址为源地址,主机向本地链路中所有路由器多点传送一个被称为路由器请求( router solicitation)的配置信息。路由器以一个包含一个可聚集全球单点传送地址前缀和其它相关配置信息的路由器公告响应该请求。主机用它从路由器得到的全球地址前缀加上自己的接口ID,自动配置全球地址,然后就可以与Internet中的其它主机通信了。使用无状态自动配置,无需手动干预就能够改变网络中所有主机的IP地址。例如,当企业更换了联入Internet的ISP时,将从新ISP处得到一个新的可聚集全球地址前缀。ISP把这个地址前缀从它的路由器上传送到企业路由器上。由于企业路由器将周期性地向本地链路中的所有主机多点传送路由器公告,因此企业网络中所有主机都将通过路由器公告收到新的地址前缀,此后,它们就会自动产生新的IP地址并覆盖旧的IP地址。

使用DHCPv6进行地址自动设定,连接于网络的机器需要查询自动设定用的DHCP服务器才能获得地址及其相关配置。可是,在家庭网络中,通常没有DHCP服务器,此外在移动环境中往往是临时建立的网络,在这两种情况下,当然使用无状态自动设定方法为宜。

网络层的认证与加密编辑本段回目录

安全问题始终是与Internet相关的一个重要话题。由于在 IP协议设计之初没有考虑安全性,因而在早期的Internet上时常发生诸如企业或机构网络遭到攻击、机密数据被窃取等不幸的事情。为了加强Internet的安全性,从1995年开始,IETF着手研究制定了一套用于保护IP通信的IP安全(IPSec)协议。IPSec是IPv4的一个可选扩展协议,是IPv6的一个必须组成部分。

IPSec的主要功能是在网络层对数据分组提供加密和鉴别等安全服务,它提供了两种安全机制:认证和加密。认证机制使 IP通信的数据接收方能够确认数据发送方的真实身份以及数据在传输过程中是否遭到改动。加密机制通过对数据进行编码来保证数据的机密性,以防数据在传输过程中被他人截获而失密。IPSec的认证报头(Authentication Header,AH)协议定义了认证的应用方法,安全负载封装(Encapsulating Security Payload,ESP)协议定义了加密和可选认证的应用方法。在实际进行IP通信时,可以根据安全需求同时使用这两种协议或选择使用其中的一种。AH和ESP都可以提供认证服务,不过,AH提供的认证服务要强于ESP。

IPSec定义了两种类型的SA:传输模式SA和隧道模式SA。传输模式SA是在IP报头(以及任何可选的扩展报头)之后和任何高层协议(如TCP或UDP)报头之前插入AH或ESP报头;隧道模式SA是将整个原始的IP数据包放入一个新的IP数据包中。在采用隧道模式SA时,每一个IP数据包都有两个IP报头:外部IP报头和内部IP报头。外部IP报头指定将对IP数据包进行IPSec处理的目的地址,内部IP报头指定原始IP数据包最终的目的地址。传输模式SA只能用于两个主机之间的IP通信,而隧道模式SA既可以用于两个主机之间的IP通信,还可以用于两个安全网关之间或一个主机与一个安全网关之间的IP通信。安全网关可以是路由器、防火墙或VPN设备。

做为IPv6的一个组成部分,IPSec是一个网络层协议。它只负责其下层的网络安全,并不负责其上层应用的安全,如Web、电子邮件和文件传输等。也就是说,验证一个Web会话,依然需要使用SSL协议。不过,TCP/IPv6协议簇中的协议可以从IPSec中受益,例如,用于IPv6的OSPFv6路由协议就去掉了用于IPv4的OSPF中的认证机制。

作为IPSec的一项重要应用,IPv6集成了虚拟专用网(VPN)的功能,使用IPv6可以更容易地、实现更为安全可靠的虚拟专用网。

服务质量的满足编辑本段回目录

基于IPv4的Internet在设计之初,只有一种简单的服务质量,即采用“尽最大努力”(Best effort)传输,从原理上讲服务质量QoS是无保证的。文本传输,静态图像等传输对QoS并无要求。随着IP网上多媒体业务增加,如IP电话、VoD、电视会议等实时应用,对传输延时和延时抖动均有严格的要求。

IPv6数据包的格式包含一个8位的业务流类别(Class)和一个新的20位的流标签(Flow Label)。最早在RFC1883中定义了4位的优先级字段,可以区分16个不同的优先级。后来在RFC2460里改为8位的类别字段。其数值及如何使用还没有定义,其目的是允许发送业务流的源节点和转发业务流的路由器在数据包上加上标记,并进行除默认处理之外的不同处理。一般来说,在所选择的链路上,可以根据开销、带宽、延时或其他特性对数据包进行特殊的处理。

一个流是以某种方式相关的一系列信息包,IP层必须以相关的方式对待它们。决定信息包属于同一流的参数包括:源地址,目的地址,QoS,身份认证及安全性。IPv6中流的概念的引入仍然是在无连接协议的基础上的,一个流可以包含几个TCP连接,一个流的目的地址可以是单个节点也可以是一组节点。IPv6的中间节点接收到一个信息包时,通过验证他的流标签,就可以判断它属于哪个流,然后就可以知道信息包的QoS需求,进行快速的转发。

对移动通讯更好的支持编辑本段回目录

未来移动通信与互联网的结合将是网络发展的大趋势之一。移动互联网将成为我们日常生活的一部分,改变我们生活的方方面面。权威机构预计,到2005年,全球将有14亿移动电话用户,其中10亿为移动互联网用户。移动互联网不仅仅是移动接入互联网,它还提供一系列以移动性为核心的多种增值业务:查询本地化设计信息、远程控制工具、无限互动游戏、购物付款等。

移动IPv6的设计汲取了移动IPv4的设计经验,并且利用了IPv6的许多新的特征,所以提供了比移动IPv4更多的、更好的特点。移动IPv6成为IPv6协议不可分割的一部分。

IPv6与流媒体传输在互联网的应用编辑本段回目录

概述

当前,流媒体传输应用发展迅速,在internet上传输流媒体的相关技术成为热点。但是,在internet上传输流媒体存在着许多困难,其根本原因在于internet的无连接每包转发机制主要是为突发性数据传输设计的,不适合传输连续媒体流。而且网上信息的交互性,使网络中的信息传输量日益剧增,网络传输的瓶颈问题突出。当前的互联网络是在上世纪90年代初发展起来的,基于的协议是ipv4,随着internet用户和应用的不断增加,ipv4已渐渐暴露出地址空间严重不足、数据传输缺乏质量保证、数据安全性难以保证和对组播功能支持有限等问题。这在一定程度上限制了音视频等流媒体应用的进一步发展。多媒体视频流对数据可靠性要求不高,一定的数据丢失对视频播出的实际效果影响不大,但是多媒体视频流对网络传输延时和抖动比较敏感。为了在internet上有效、高质量地传输流媒体数据,除了要进一步发展压缩、编解码技术以外,还应该考虑流媒体数据的网络传输质量控制、数据分发路径等技术。另外,随着社会各界对知识版权意识的不断增强,安全加密、数字版权管理等也成为internet发展的重要技术课题。
  
20世纪90年代中期,互联网工程任务组(internet engineering task force,ietf)为了更好地满足互联网络的未来发展需求,设计了一种新的ip协议——ipv6,其特性包括:更大的地址空间;严格的继承性编址方式,更加容易实现地址的聚合;简洁的数据报头;提供更好的服务质量;强制安全协议ipsec;“即插即用”的地址自动配置;更为灵活的组播方式;更好的扩展性。
  
传统的ipv4网络已经无法满足高质量流媒体通信的要求,而ipv6在流媒体传输应用方面的意义主要有:
  
(1)解决了地址容量问题,优化了地址结构以提高选路效率,提高了数据吞吐量,以适应流媒体通信大信息量传输的需要;
  
(2)ipv6对ipv4的最大革新之处在于对qos的考虑,对各种多媒体信息根据紧急性和服务类别确定数据包的优先级;
  
(3)ipv6还加强了组播功能,即实现基于组播、具有网络性能保障的大规模视频会议和高清晰度电视广播的应用,这是只有高带宽、高性能的下一代因特网才能支持的典型应用,具有交互协同技术特性;
  
(4)ipv6采用必选的ipsec很好地保证了网络的安全性。
  
可以看出,ipv6比ipv4在服务质量、传输安全、数据组播等方面都有了改进。而这些都是与ip网络流媒体传输息息相关的。
  
服务质量

基于ipv4的internet从原理上讲服务质量(qos)是无保证的。文本传输、静态图像等传输对qos并无要求,但其它多媒体业务,如ip电话、vod、电视会议等实时应用,对传输延时和延时抖动均有严格的要求。
IPV6协议  
在ipv4协议中,ip数据报头(见图1)包含了一个8b的服务类型(type of service,tos)字段。在tos字段中,包含了3b的优先权子字段(现在已被忽略)、4b的tos子字段和1b的保留子字段。4b的tos子字段分别用于表示最小时延、最大吞吐量、最高可靠性和最小费用。在一个业务数据流当中,这个字段只能有1b置为1,如果没有比特位被置1,则表示这个业务数据是一般服务。在rfc1340和rfc1349中描述了所有的标准应用如何设置这些服务类型,但是在实际应用中,绝大多数tcp/ip的实现应用都不支持和使用tos字段。
IPV6协议 
 
在ipv6协议的数据报头(见图2)中,对8b的tos字段进行了调整。最早在rfc1883中定义了4b的优先级字段,可以区分16个不同的优先级。后来在rfc2460中改为8b的业务类别(traffic class)字段,其目的是允许发送业务流的源节点和转发业务流的路由器在数据包上加上标记进行不同处理,但并没有具体说明这个字段如何使用。另外,在ipv6数据报头当中还有一个新的20b的流标签,用于标记某个业务数据流的ip包序列,以便路由器能够提供qos或实时服务。一般来说,在所选择的链路上,可以根据开销、带宽、延时或其他特性对数据包进行特殊的处理。但同样,流标签并没有表明qos的提供方式。
  
可以看出,ipv6并没有从根本上解决ipv4的qos问题,只是在ipv4的基础上作了一定的扩充。为了更好地解决ip网络的qos问题,ietf提出了多种质量服务模型和机制,以满足流媒体等应用对qos的要求。其中最主要的有两种:综合业务模型和差分业务模型。
  
综合业务模型

综合业务模型是根据数据包的ip源地址、ip目的地址、上层协议类型、源端口号、目的端口号等进行预定分类,并利用资源预留协议(resource reservation protocol,rsvp),给每个业务流(或连接)申请传输路径资源预留,以提供端到端的传输质量服务。
  
rsvp是综合业务模型的核心。用户可以给每个业务流(或连接)申请资源预留,要预留的资源可能包括缓冲区及带宽的大小。在传输路径上的每一跳都要进行这种预留,这样才能提供端到端的qos保证。rsvp是单向的预留,适用于点到点及点到多点的通信环境。除了rsvp以外,综合业务模型还包含三个组件用于提供整个qos业务:访问控制,它基于用户和网络达成的服务协议,对用户的访问进行一定的监视和控制,有利于保证双方的共同利益;分类器,根据数据包的ip源地址、ip目的地址、上层协议类型、源端口号、目的端口号等预定策略,将数据包分类放到不同的队列中等待接收服务;队伍调度器,它主要是基于一定的调度算法对分类后的分组队列进行调度服务,常见的调度算法有wfq、wf2q、scfq、vc、md-scfq、wrr等。
  
综合业务模型的特点是针对不同级别的服务提供相应的资源预留,需要质量保证的应用在传输数据前必须申请预留资源。它定义了三种级别的服务:保证服务、受控负载服务、尽力而为的服务。其优点是管理者能够根据源、目的、端口等制订严格详尽的服务保证策略,并能对数据流进行监视和控制,以防止其占用更多的资源,同时rsvp协议能够让路径消息识别组播流的所有端点,并发送路径消息给它们。它同样可以把来自每个接收端的revp消息合并到一个网络请求点上,该点可以让一个多播流在分开的连接上发送同样的流。其主要缺点是可扩展性差,因为rsvp要求端到端的信令,这也就意味着要求从发送者到接收者的所有路由器都支持所实施的信令协议。这在一个实际运行的运营商网络中几乎无法实现。
  
ipv6与ipv4在综合业务模型上没有本质上的区别,都是以rsvp为核心协议。在ipv4中,rsvp依照业务数据流的源地址、目的地址、端口等信息制定相应的qos策略,而且要在传输路径上的所有路由器上实现这些策略。这意味着传输路径上的所有路由器都需要分析每个数据包的源地址、目的地址、端口等信息,这将会增加路由器的负担,另外,当数据量增大时,也会增加数据包的处理延时。ipv6为rsvp的实施提供了一种更为有效的方法。主要原因在于,在ipv6数据报头信息中定义了专门的qos支持域,ipv6对qos的支持主要表现在流标记域,流标记基本上是按位产生的伪随机数,在一定的时间值内,源端不能重用流标记。流标记为0,指示这个包不属于任何流。ipv6环境下的rsvp可以只依照数据包的流标记制定相应的qos策略,这将大大减小rsvp的开销,同时传输路径上每个路由器的处理负担也相应减小,使rsvp策略的实施更为简便。另外,当需要qos服务的数据流的生存期很短或者所需带宽很小时,rsvp的开销很可能大于数据流中所有包的开销,如果在ipv4网络中采用综合业务模型,将得不偿失;而在ipv6网络中rsvp的开销非常小,使得这种业务需求得到保障。
  
差分业务模型

差分业务模型是由综合业务模型发展而来的,它采用了ietf的基于rsvp的服务分类标准,抛弃了分组流沿路节点上的资源预留。它将有效地取代跨越大范围的rsvp的使用。差分业务模型区域的主要成员有核心路由器、边缘路由器、资源控制器。

差分业务模型利用ipv4数据报头中的tos字段或ipv6数据报头中的tc字段,并对8位tos或tc字段重新命名,作为ds字段,其中6位可供目前使用,其余2位以备将来使用。该字段可以按照预先确定好的规则加以定义,使下行节点通过识别这个字段,获取足够的信息来处理到达输入端口的数据包,并将它们正确地转发给下一跳的路由器。在差分业务模型中,网络的边缘设备对每个分组进行分类、标记ds域,用ds域来携带ip分组对服务的需求信息。在网络的核心节点上,路由器根据分组头上的dscp(diffserv code point)选择所对应的转发处理。资源控制器配置了管理规则,为客户分配资源。它可以通过服务级别协定(service level agreement,sla)与客户进行相互协调以分享规定的带宽。与综合业务类似,差分业务也定义了三种业务类型:最优的业务(premium),类似于传统运营商网络的专线业务;分等级的业务(tiered),可以根据发展的需要定制不同的业务等级;尽力而为的业务(best-effort),类似于internet中尽力而为的业务。
  
在差分业务模型中,可以认为ipv6与ipv4没有区别。
  
组播
在ipv4网络中,数据传送方式有三种:单播、广播和组播。
  
单播(unicast)传输
指在发送者和接收者之间建立单独的数据信道,发送者需要为每个接收者传送一份数据拷贝。如果一个发送者同时给少量的接收者传输数据,一般没有什么问题。但如果有大量主机希望获得数据包的同一份拷贝时,这将导致发送者负担沉重、延迟长、网络拥塞。为保证一定的服务质量需增加硬件和带宽。
IPV6协议  
广播(broadcast)传输
指在发送者向网络内广播数据包,所有在子网内部的主机都将收到这些数据包。发送者向网络广播地址传送一份数据拷贝,则网络内的所有主机都会收到这份数据拷贝。

IPv6标准化现状编辑本段回目录

一、国外IPv6标准化进程

在制定IPv6标准的国际组织中,IPv6协议主要由IETF制定,ITU则是考虑IPv6协议在电信网络中的应用;3GPP组织主要负责IPv6在3G核心网以及3G终端中的应用。IPv6协议的研究进程主要在IETF组织内完成。

目前IETF负责IPv6标准制定的工作组主要有两个:IPv6工作组(IPv6)和IPv6运营工作组(v6ops),分别属于传输领域和运营维护领域。

1.IPv6工作组

负责IPv6规范和标准的制定工作,其前身是IPng工作组。该工作组的职责之一是继续制定IPv6相关技术标准,二是根据实现和部署的情况,审查和更新IPv6标准和规范。该工作组现在将这些工作划分为两类,分别是“部署急需”和“完成目前工作”,其中前一类工作是IPv6工作组目前要优先考虑的。该工作组已经制定完成了65个RFC(此外17个RFC因各种原因已经被废止)。

IPv6工作组当前正在研究的草案有:ICMPv6规范;缺省路由器选择以及多个特定路由;对于IPv6主机的路由器负荷分担;本链路IPv6组播地址;IPv6节点要求;IP转发表MIB;IPMIB;UDPMIB;唯一的本地IPv6单播地址;IPv6编址框架;IPv6隧道MIB;IPv6无状态地址自动分配;可选的IPv6重复地址发现;统一分配的唯一的本地IPv6单播地址;IPv6邻居发现;IPv6无状态地址分配的私有扩展;IPv6路由器公告中M和O标志的考虑;类似桥接的邻居发现代理。

2.v6ops工作组

负责演进机制、工具和部署方面的标准化工作,其前身是NGTRANS工作组。2002年,IETF解散了NGTRANS工作组,新组建了IPv6Operations(v6ops)工作组,该工作组目前的主要职责有以下几个方面。

(1)根据来自运营商和用户的要求和建议,研究IPv4/IPv6Internet在运营或安全方面的问题,确定解决方案或这些问题出现的场景。

(2)向IPv6工作组提出有关IPv6规范中导致或可能导致运营或安全问题的地方,并与IPv6工作组一起设法解决这些问题。

(3)发布一些资料性的RFC,指导应用开发人员开发出与IP协议独立的应用和业务,即开发出同时适用于IPv4和IPv6的应用。

(4)发布一些资料性的或BCP(BestCurrentPractice)类型的RFC,确定和分析在公用网络环境中IPv6的设计方案。

(5)明确在上述环境中部署IPv6所面临的开放的运营或安全问题,归档为RFC或ID。

(6)担负起对演进/过渡机制的推进工作。

除了上述工作,一些与IPv6密切相关的重要工作IETF也在进行中,以促进IETF在确定和开发合适的解决方案方面的标准化进程。

v6ops工作组正在研究的草案有:3GPP网络想IPv6过渡的分析;IPv6主机和路由器的基本过渡机制;IPv6企业网场景;没有期限日的IPv6重编号过程;IPv6企业网分析;将NAT-PT转成实验(Experimental)状态的理由;运营商再宽带接入网络的IPv6发展场景;IPv6网络结构保护。

二、我国IPv6标准体系

虽然由于我国在信息领域起步较晚,国际上很少有我国提交的标准,但是标准化工作在我国依然非常重要。IPv6标准体系包含大量内容。我国的标准化工作两个重要方面是接口与协议的标准及其测试和设备的标准及其测试。接口与协议的标准主要工作是将国际标准本地化。当然可能依据中国特色对国际标准中的一些选项作选择。设备及其测试标准主要用作网络设备入网测试。该工作在国外属运营商内部工作,但是在国内由于电信业长期政企不分,设备规范及测试已成为行业管制重要部分。当前对应设备及测试的入网测试对保障公用电信网基本服务及质量以及网间互联互通仍很重要,所以仍有必要制定设备标准以及设备测试标准。未来电信行业标准的趋势是负责运营商网间互联互通以及网络服务质量等工作。设备性能功能的要求应当留给运营商自行决定。

我国现阶段IPv6标准已形成系列,该系列将随技术发展逐渐补充完善。具体标准以及现状如下表所示:

IPV6协议
IPV6协议
IPV6协议
IPV6协议

虽然业界对IPv6的商用化时间仍存在分歧,但是对于IPv6最终取代IPv4并且在通行网络中发挥越来越大的作用已成共识。中国作为一个互联网和通信技术及市场快速发展的国家,在IPv6的标准化工作上刻不容缓。在标准制定中不但应当符合国际标准,而且应当参与国际标准的制定。如果各行业广泛参与标准制定,制造业迅速跟进且运营商及时提供相应网络和服务,我国完全有可能在下一代互联网中占得先机。

IPv6对硬件平台技术要求浅析编辑本段回目录

随着CNGI等项目的启动,IPv6技术的战略地位凸现,各种媒体IPv6技术也进行了比较广泛的介绍和报道,主流网络设备供应商纷纷推出自己支持IPv6的产品,但同时也看到IPv6技术还远远没有达到普及的程度,那么IPv6技术究竟离我们有多远?目前阻止其广泛应用的障碍都有哪些?其实从IPv6技术本身来说,还有很多亟待解决的问题,特别是过渡到IPv6技术之后,IPv6和IPv4对硬件平台的要求有什么不同?从IPv6如何过渡到规模应用阶段来说,尤其是在保护用户投资方面,异常重要。

IPv6过渡期的技术特点

应该说,处于过渡期的IPv6技术最大特点莫过于不断的升级,IPv4发展了几十年,在路由协议、QoS、组播、报文头扩展、状态机备份、安全等方面还在不断地完善中,相信IPv6在标准建设、协议栈开发方面还有巨大的工作要完成。因此,在相当长的一段时间内,IPv6将会面临不断升级完善的局面。为了兼容现有的IPv4技术,尽快地获取生存空间,支持IPv6的网络设备更多的要在双栈环境下运行,“兼容性”大于“先进性”,在确保兼容性的前提下,如何在应用支持方面,能够做到比IPv4更具优势是过渡期IPv6开发的重点。

那么,如何更好地体现IPv6的技术优势呢?对硬件平台的要求应该是我们考虑的重点。一般而言,目前的硬件平台主要是分为ASIC平台和可编程硬件平台(NP、FPGA等)。下面从几个角度来分析一下这种不同,可以让我们对IPv6技术有一个更为全面的认识。

软件升级支持

针对处在过渡期的IPv6技术会不断升级的特点,NP等可编程硬件显然具备更强的优势。NP对于硬件的技术优势主要在于方便优化、升级,从而很容易增加新特性。由于IPv6网络处于新生时期,协议、特性的更新是频繁的,这就要求IPv6设备能较快的更新换代。从另一个角度,IPv6设计的一个宗旨是方便用户应用层的扩展,因此NP可以根据用户需求设计出实用的私有特性。而ASIC目前能够做的只能是IPv6协议已经固化的转发功能,无法做到支持扩展方面的功能,只能依靠设备中的CPU解决。这样的后果是让整个设备的转发速率下降到一个无法接受的水平(几百Kpps),并且会威胁到设备的稳定性。因此,从这个角度来说,选择可编程的硬件平台设备可以更好地保护用户的投资。

路由表容量问题

IPv6采用128位地址,路由表占用空间在容量不变时要增大到原来的4倍,而ASIC中的硬件转发的路由表存储在ASIC专用的地址空间中,硬件地址表空间很有限,一般情况下也就在几十K的水平,因此ASIC平台在IPv6的环境中,如果保持IPv4一样的地址表空间将会大大提高成本,因此硬件在设计上需要尽量节省私有空间大小而提高路由表容量。在实际的应用环境中,在过渡期,设备往往运行在双栈环境下,同时面临IPv6和IPv4的路由表需求,因此对地址空间的要求将大于目前的纯IPv4环境。

选项头和扩展头的支持

IPv6的选项头更能远远强于IPv4的IP选项,对于扩展头的处理也更加丰富。其中所有转发结点都要处理路由扩展头、逐跳选项头和地址选项头。逐跳选项与地址选项目的是为了支持特殊应用(如安全、管理)而预留的,中间结点需要根据某种策略来处理。目前RFC2460并未定义成熟而有意义的选项,其潜力尚未发挥。因此,当需要使用这些选项头实现用户特殊需求,或者IPv6协议有扩展升级的时候,只有NP等可编程硬件能很快适应这些变化并升级系统,而用ASIC实现则难以快速应对协议升级和市场需求变化。

报文转发效率

IPv6协议的一个设计思想是减轻转发的负担,采用以下了几个思路:

1、基本报文头长度固定,没有多余的头部长度字段;

2、转发结点并不计算校验和;

3、中间结点不得分片。

相对于其它硬件平台来说,ASIC平台最大的优势就在于“硬件”转发,也就是说直接通过ASIC硬件查表实现数据的快速转发。在转发性能、转发延迟方面,在IPv4的环境中ASIC平台相对其它平台有几乎大一个甚至更多数量级的优势,然而随着IPv6的这些特点的产生,其它硬件平台在IP报文头上的开销将大大减小,导致其它平台和ASIC平台之间的差距在缩小。

QoS的实施

作为从IPv4衍生而来的IPv6技术,并没有改变IP技术的最本质特点面向无连接的网络,因此IPv4所面临的所有QoS问题,在IPv6中同样存在。IPv6协议在IP Base(基本)和Extension(扩展)报头中包含了少量特定于QoS的服务元素,包括流量类别(Traffic Class)和相应的流标签(Flow Label)。由于报文头的简化,QoS处理和实施的效率会有所提高。但我们也应该看到,随着IP网络规模的增大和应用业务的日益复杂,IP网络日益已经成为一个“补丁”网络。至今为止在IPv4网络中的QoS技术和标准还在不断产生,而IPv6的QoS问题还根本没有被广泛提及,队列机制、调度机制等标准的制定工作还处于初级阶段。这些机制将牵涉到队列的缓冲区、处理策略等等,IPv4环境下的ASIC的这些处理机制都是固化在芯片中,而在现有的环境下,用ASIC实现将来的IPv6的QoS策略显然不现实,采用可编程硬件将是有效实现将来的QoS策略的唯一选择。

过渡时期的策略

NAT-PT属于一种IPv4到IPv6的过渡策略,目的是进行IPv4到IPv6报文头部的转换。由于转换涉及到高层协议(如FTP)内部的IP地址等信息,必然需要面对完整的IP报文进行解析。因此NAT-PT结点在转换报文前,首先需要将IPv6分片报文重组,会需要缓冲大量乱序报文并记录超时。硬件实现时需要大量的空间和定时器。

另外,IPv6的ACLv6(访问控制列表)也涉及到报文重组,ACLv6更强大的功能在于扩展头地址的解析。ACLv6可以根据IPv6报文任意扩展头的内容、传输层协议的标志等做为策略参数并做决策。强大的ACL特性是NAT-PT、IPsecv6、防攻击设计、防火墙的重要基础。NP等可编程硬件很容易以较低成本实现丰富的ACL特性。

在VPN的应用中,当转发报文的出口为Tunnel(如GRE)时,处理会更复杂一些,需要根据Tunnel类型和特性对报文的重新封装、嵌套、查路由表、分片等等,以适应复杂应用与组网。同时,对于类似GRE的Tunnel,用户可以自定义丰富的附加属性信息以满足需求。NP相对于硬件比较容易的升级以处理丰富的Tunnel特性。

从以上的应用分析可以看出,NP等可编程硬件平台更容易实时过渡时期的一些策略。

IPv6的优势、演进方案和前景展望编辑本段回目录

随着Internet的发展,IPv4的局限越来越暴露出来,严重制约了IP技术的应用和未来网络的发展。IPv6作为下一代网络的基础以其鲜明的技术优势得到广泛的认可。本文从技术和应用两方面分析了IPv6的特点优势,说明了IPv4网络向IPv6网络演进的过渡策略以及方案,并对IPV6的应用前景做了简要介绍。

一、IPv6的优势

IPv6的发展是从1992年开始的,经过了12年的发展时间,IPv6的标准体系已经基本完善,在这个过程中,IPv6逐步优化了协议体系结构,为业务发展创造机会,归纳起来IPv6的优势包括如下几个特点。

地址充足:IPv6产生的初衷主要是针对IPv4地址短缺问题,即从IPv4的32bit地址,扩展到了IPv6的128bit地址,充分解决了地址匮乏问题。同时IPv6地址是有范围的,包括链路本地地址、站点本地地址和任意传播地址,这也进一步增加了地址应用的扩展性。

简单是美:通过简化固定的基本报头、采用64比特边界定位、取消IP头的校验和域等措施,以提高网络设备对IP报文的处理效率。

扩展为先:引入灵活的扩展报头,按照不同协议要求增加扩展头种类,按照处理顺序合理安排扩展头的顺序,其中网络设备需要处理的扩展头在报文头的前部,而需要宿端处理的扩展头在报文头的尾部。

层次区划:IPv6极大的地址空间使层次性的地址规划成为可能,同时国际标准中已经规定了各个类型地址的层次结构,这样既便于路由的快速查找,也有利于路由聚合,缩减IPv6路由表大小,降低网络地址规划的难度。

即插即用:IPv6引入自动配置以及重配置技术,对于IP地址等信息实现自动增删更新配置,提高IPv6的易管理性。

贴身安全:IPv6集成了IPSec,用于网络层的认证与加密,为用户提供端到端安全,使用起来比IPv4简单、方便,可以在迁移到IPv6时同步发展IPSec。

QoS考虑:新增流标记域,为源宿端快速处理实时业务提供可能,有利于低性能的业务终端支持IPv6的语音、视频等应用。

移动便捷:MobileIPv6增强了移动终端的移动特性、安全特性、路由特性,降低了网络部署的难度和投资,为用户提供了永久在线的服务。

可以说,IPv6的上述特点充分迎合了未来网络向IP融合统一的发展方向,并提升了IP网络的可运营可管理性。

二、IPv6的杀手应用

IPv6技术体系经历了十多年的发展,其标准化的进程缓慢,严重影响了IPv6技术关键应用体系的建立。近两年来由于亚洲和欧洲力量的推动,IPv6的标准化进程明显加快,具有IPv6特性的网络设备和网络终端,以及相关的硬件平台的推出也已加快了进度。在这种趋势下,IPv6的关键应用将很快出现。

1.3G业务

由于IP的诸多优点和全球IP浪潮的冲击,3G演变为全IP网络的趋势越来越明显。为了满足永远在线的需要,每一个要接入因特网的移动设备都将需要两个唯一的IP地址来实现移动因特网连接,本地网络分配一个静态IP地址,连接点分配第二个IP地址用于漫游。GPRS和3G作为未来移动通信蓝图中的核心组成部分,对IP地址的需求量极大,只有IPv6才能满足这种需要。

在3GPP的标准中,R4版本已经实现核心网的IP化和CS域承载和控制的分离,在R5和以后的版本中接入网也将实现IP化,多媒体域也将在UMTSR5中推出。3GPPRANWG3已经通过如下决议:对于Iu、Iub以及Iur接口,如果要提供IP传输,则UTRAN节点必须支持IPv6,UTRAN节点支持IPv4作为可选。

2.个人智能终端

经济的发展带动了个人电子设备的发展,由呼机、手机、PDA到智能手机的发展趋势看,有联网能力的集成数据、语音和视频的个人智能终端将会很快出现,经过2~4年的发展,其规模就会相当大,由此将产生巨大的对IP地址的需求,这将是过渡到IPv6的一个最大动因。

3.家庭网络

根据AlliedBusinessIntelligence的预测,家用网关的数量将从2000年的618000个增加到2005年的16.8M个,销售额将从$223M增加到$3.7B。家用宽带和DSL设备的增长也是驱动家庭网络市场的因素,很多信息技术厂商都在进行家庭网络方面的项目。像IEEE1394和蓝牙这样的新技术已经被开发用于移动和家庭用途,那些加入了处理器的设备越来越具备和网络相连的条件,具体家庭网络连接方式如图1所示。

IPV6协议图1家庭网络连接方式
图1家庭网络连接方式

由于IPv6所拥有的巨大地址空间、即插即用的易于配置、对移动性的内在支持,使得IPv6在实际运行中非常适合拥有巨大数量的各种细小设备网络而不是由价格昂贵的计算机组成的网络。随着为各种设备增加网络功能的成本的下降,可以预见IPv6将在连接有各种简单装置的超大型网络中运行良好,这些简单设备不仅仅是手机和PDA,还可以是存货管理标签机、家用电器、信用卡等。因此,那些在IPv4技术方面经验丰富且希望将其技术延伸和扩展到IPv6领域中的公司必须了解:IPv6网络将从根本上不同于IPv4网络,不仅仅是更大的网络,而且连在网络上的将是更便宜、更简单、更小巧的设备。在IPv6中获得成功的公司的业务将始于某种其他公司通常认为太小或不能从中获得高额利润而忽略掉的细小领域中,如在发展中国家推广IPv6网络、在有许许多多节点的无线装置中增加IPv6功能,从单个IPv6地址中获得的利润将比IPv4小得多,但IPv6地址的巨大数量将使得利润总额达到前所未有的丰厚。

4.在线游戏

游戏业是一个很大的产业,仅美国的游戏市场就达到了100亿美元。在线游戏又是游戏业的一个明显的发展趋势,使得玩家能够和跨地域的玩伴展开竞赛,而不再是局限在同一房间里。在线游戏是技术上可行并将在将来几年里迅速发展的业务之一。

在线游戏需要把分散在不同地域的用户连接起来,并保证安全、隐私和计费的需要。由于缺少足够的IP地址,IPv4的网络无法满足在线游戏P2P的需求。另外,在线游戏必须支持固定和移动两种网络接入方式。采用基于IPv6的游戏终端主要是和游戏服务器进行交互,几乎不需要访问原来大量的IPv4的服务器,这也非常符合IPv6网络早期的“相互连接的孤岛”的架构。由于这些技术和商务的需要,在线游戏如果没有IPv6的支持肯定无法获得成功,这应该是IPv6的软件和设备的一个驱动力,在线游戏可能也是近期推动IPv6杀手业务之一。

当然,就IPv6在国内的部署,华为3Com认为目前的情况是教育先行,然后是运营商和政府。把IPv6的架构融合到现有网络中去有两个思路:一个是从骨干到接入,另一个是从接入到骨干。教育网采用的方法是从骨干到接入,在骨干网支持IPv6的情况下,各院校自行建设IPv6园区网。而现有IPv4设备可通过软硬件升级进而支持IPv6,保护了用户现有投资。而在运营商市场特别是城域网方面,预计IPv6在今年下半年或明年就会开始启动。目前,尽管支持IPv4/IPv6双栈的路由器并不比纯IPv4产品贵多少,但由于需要购买网关来实现IPv4与IPv6的互通,进而扩大了投资,同时还会造成性能上一定程度的降低。但是,一旦上述的杀手级应用出现,提前在IPv6上做好准备的运营商就会占尽先机。而且,IPv6的部署也会促进新业务的开展。根据目前状况来看,运营商实施IPv6会倾向于自下而上地展开,从城域接入延展到省干、国干。

三、从IPv4到IPv6过渡策略的制定依据

IPv6相比于IPv4是一个巨大的进步,也是一个很大的变革,从IPv4网络逐步过渡到IPv6网络,到完全替代IPv4网络的过程中,网络上的部件逐步被新的部件替换,其中的替换次序就是IPv4到IPv6的过渡策略。关于过渡策略,华为3Com认为需要从以下几方面着手。

1.保护用户投资。目前网络上的主要设备包括:骨干路由器、汇聚路由器、接入路由器、各种网关设备、以太网交换机和网络终端,它们分布于不同层次的网络中,替换设备时,应根据网络具体情况考虑妥善的过渡策略,避免对已有用户或者网络有大的冲击,保护用户投资。

2.重视网络应用的发展。IPv6网络所承载的业务关系到IPv6的持续发展,一方面要将IPv4体系上现有业务应用进行平滑性过渡,另一方面要发展新的应用,特别是“杀手应用”。

3.IPv6到IPv4的分步实施策略。IPv4体系已经建立了庞大的用户和网络集团,在相当长的时间内,两种体系将共同发展。

4.IPv6网络不是用于直接替换现有的低速、窄带IPv4的网络。在IPv4网络中还存在大量的低速链路,而这些链路的MTU可能低于1280字节,在这些链路上运行IPv6不仅对带宽是一种浪费,而且从报文的传输机制上也不能满足IPv6的中间网络设备不能对报文分片的要求。

IPv6作为下一代互联网协议已经引起了社会各界的重视,政府、企业都在尽力去推广IPv6。对于政府来说,推广IPv6有助于保证整个国家在信息产业的优势;对于企业来说,推广IPv6有助于获得最大利润,有助于在未来的发展中立于不败之地。

四、IPv6的应用前景

据预测,到2005年中国的互联网用户将达到2亿人,在数量上将达到世界第一位。就算全部互联网用户不都是永远在线,IP地址的不足在三四年后也将被耗尽。IPv4地址枯竭后,才进行IPv6地址的分配和IPv6的网络构建是来不及的,应该在IPv4地址枯竭前逐步引进IPv6,经过IPv6与IPv4的共存时代,最终全面过渡到IPv6。

美国拥有全世界约70%的IP地址(大约每人10个IP地址),他们几乎感觉不到地址空间少带来的压力,因此,在IPv6推出之后的几年中,他们对新标准的态度不是很积极。但是最近美国人对IPv6的态度发生了一些细微的变化,美国国防部也在积极测试IPv6,并宣布替换现有的IPv4网络。在欧洲,由于IPv4地址相对匮乏,政府和各大公司对IPv6的态度都比较积极。同时由于欧洲在IPv4的网络经济中落后于美国,而欧洲移动通信事业相对发达,他们希望在移动通信领域中掌握先机,并通过3G的部署来实现他们在未来的网络经济中与美国并驾齐驱的愿望。为了抓住这一发展的契机,欧洲的各大厂商和运营商都对IPv6寄予了厚望并竭尽全力对它进行推广和研究,如诺基亚、爱立信、英国电信等公司一直都是IPv6研究方向的主要引导者。亚太的地址空间更加匮乏,包括中国在内的很多国家对IPv6保有积极的态度。所以无论从地址耗尽的角度考虑还是从全球发展的角度考虑,IPv6在中国具备很大的发展空间。可以说,IPv6已经成为数据通信产业一个璀璨的技术亮点。IPv6也为中国带来了赶超发达国家,重新划分Internet势力范围的机会。自去年10月,中国宣布将启动CNGI项目,并于2005年底建成世界最大的IPv6网之后,我国IPv6的发展状况便引起了全球的高度关注。4月12日~14日,第三届“全球IPv6高峰论坛”在北京召开,更是给我国IPv6应用的热潮提供了有力的推动,论坛上,全球IPv6论坛主席LatifLadid还明确指出:“中国将是IPv6最大的市场,IPv6的杀手级应用将率先在中国出现。”

 

资料来源编辑本段回目录

→如果您认为本词条还有待完善,请 编辑词条

词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。
0

标签: IPV6协议

收藏到: Favorites  

同义词: 暂无同义词

关于本词条的评论 (共0条)发表评论>>

对词条发表评论

评论长度最大为200个字符。